Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.220
Filtrar
1.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592087

RESUMO

Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.

2.
Anal Chem ; 96(15): 5852-5859, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556977

RESUMO

A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Humanos , Medições Luminescentes/métodos , Fotometria , Neoplasias da Próstata/diagnóstico , Antígeno Prostático Específico , DNA , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos
3.
Clin Transl Radiat Oncol ; 46: 100767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576855

RESUMO

Centrally located hepatocellular carcinoma (HCC) is difficult to be radically resected due to its special location close to major hepatic vessels. Thus, we aimed to assess whether stereotactic body radiation therapy (SBRT) can be an effective and safe approach for centrally located HCC. This retrospective study included 172 patients with centrally located HCC who were treated with SBRT. Overall survival (OS) was analyzed as the primary endpoint. Rates of progression-free survival (PFS), local control, intrahepatic relapse, extrahepatic metastasis and toxicities were analyzed as secondary endpoints. The OS rates of 1-, 3-, and 5-year were 97.7%, 86.7%, and 76.3%, respectively. The PFS/local control rates of 1-, 3-, and 5-year were 94.1%/98.2%, 76.8%/94.9%, and 59.3%/92.3%, respectively. The cumulative incidence of intrahepatic relapse/extrahepatic metastases of 1-, 3-, and 5-year were 3.7%/2.9%, 25.0%/7.4%, and 33.3%/9.8%, respectively. Both univariate and multivariate analyses revealed that patients received BED10 at 100 Gy or more had better OS. Radiation-related adverse events were mild to moderate according to Common Terminology Criteria for Adverse Events, and no toxicities over grade 3 were observed. Patients with centrally located HCC in our cohort who received SBRT had similar OS and PFS rates compared to those reported in literatures who received surgery with neoadjuvant or adjuvant intensity-modulated radiation therapy. These results indicate that SBRT is an effective and well-tolerated method for patients with centrally located HCC, suggesting that it may serve as a reasonable alternative treatment for these kind of patients.

4.
Int J Biol Macromol ; 268(Pt 1): 131701, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643920

RESUMO

Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.

5.
ChemSusChem ; : e202400450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660929

RESUMO

For the sluggish reaction kinetics due to a four-electron transfer process, water oxidation is always a major obstacle to solar splitting of water to hydrogen. It remains a tough challenge to develop efficient nonnoble-metal photocatalysts for water oxidation. Herein, we decorate the host photocatalyst of Bi11VO19 nanotubes with the coatalyst of subnanometer MoOx clusters (denoted as Bi11VO19/MoOx hetero-nanotubes) via a one-step cation-exchange solvothermal reaction using Na2V6O16 nanowires as the hard template. It is observed that the morphology and microstructure of Bi11VO19/MoOx hetero-nanotubes vary with the dosage of Mo source and polyvinylpyrrolidone, as well as with the solvent composition. The optimized Bi11VO19/MoOx hetero-nanotubes significantly enhance the photooxidation of water to oxygen with visible light, delivering an oxygen production rate of 790 mmol g-1 h-1, which is 12 times that of bare Bi11VO19 nanotubes. In situ X-ray photoelectron spectroscopy and (photo)electrochemical characterization suggest that the enhanced photoactivity may be caused by the decorated cocatalyst of MoOx clusters, which extracts electrons from Bi11VO19 nanotubes, leaving an abundance of holes for water photooxidation. This work demonstrates a potential strategy to develop photocatalysts for energy conversion by constructing Bi11VO19-based nanostructures.

6.
Cytokine ; 179: 156598, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.

7.
Immunol Invest ; 53(3): 464-474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477623

RESUMO

This study was designed to investigate the correlation of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and interleukin (IL)-37/IL-17 ratio with the incidence/treatment of rheumatoid arthritis (RA). Firstly, fifty-eight patients with RA treated at the first affiliated hospital of Xinjiang Medical University from January 2018 to January 2019 were selected as the RA group; forty-nine healthy volunteers were enrolled in the control group. RA patients were treated with disease-modifying anti-rheumatic drugs (DMARDs). Next, the NLR, PLR, IL-37, IL-17 and 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) were deleted in two groups. Subsequently, Spearman correlation analysis was adopted for the correlations of various indicators before and after treatment in two groups. According to the analysis results, the levels of NLR, PLR, IL-37, and IL-17 before treatment in the RA group were higher than those in the control group (P < .05), but the difference in the IL-37/IL-17 level between the two groups was not significant (P > .05). After treatment, NLR, PLR, and IL-37/IL-17 levels were significantly reduced in RA patients (P < .05). NLR and PLR were significantly positively correlated with DAS28-ESR, ESR and C-reactive protein (CRP), of which represented the disease activity of RA. NLP was strongly correlated with IL-37/IL-17. Collectively, NLR, PLR, IL-37, and IL-17 are closely related to the occurrence of RA. In addition, NLR and IL-37/IL-17 are more suitable than PLR in reflecting the therapeutic effect. Therefore, IL-37/IL-17 can be considered as a new indicator for reflecting the treatment effectiveness of RA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Interleucina-17/metabolismo , Neutrófilos , Linfócitos/metabolismo , Plaquetas/química , Antirreumáticos/uso terapêutico , Proteína C-Reativa/metabolismo , Estudos Retrospectivos
8.
Front Neurosci ; 18: 1254600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510463

RESUMO

Background and purpose: Cervical Spondylotic Myelopathy (CSM), the most common cause of spinal cord dysfunction globally, is a degenerative disease that results in non-violent, gradual, and long-lasting compression of the cervical spinal cord. The objective of this study was to investigate whether microvascular proliferation could positively affect neural function recovery in experimental cervical spondylotic myelopathy (CSM). Methods: A total of 60 male adult Sprague-Dawley (SD) were randomly divided into four groups: Control (CON), Compression (COM), Angiostasis (AS), and Angiogenesis (A G),with 15 rats in each group. Rats in the AS group received SU5416 to inhibit angiogenesis, while rats in the AG group received Deferoxamine (DFO) to promote angiogenesis. Motor and sensory functions were assessed using the Basso Beattie Bresnahan (BBB) scale and somatosensory evoked potential (SEP) examination. Neuropathological degeneration was evaluated by the number of neurons, Nissl bodies (NB), and the de-myelination of white matter detected by Hematoxylin & Eosin(HE), Toluidine Blue (TB), and Luxol Fast Blue (LFB) staining. Immunohistochemical (IHC) staining was used to observe the Neurovascular Unit (NVU). Results: Rats in the CON group exhibited normal locomotor function with full BBB score, normal SEP latency and amplitude. Among the other three groups, the AG group had the highest BBB score and the shortest SEP latency, while the AS group had the lowest BBB score and the most prolonged SEP latency. The SEP amplitude showed an opposite performance to the latency. Compared to the COM and AS groups, the AG group demonstrated significant neuronal restoration in gray matter and axonal remyelination in white matter. DFO promoted microvascular proliferation, especially in gray matter, and improved the survival of neuroglial cells. In contrast, SU-5416 inhibited the viability of neuroglial cells by reducing micro vessels. Conclusion: The microvascular status was closely related to NVU remodeling an-d functional recovery. Therefore, proliferation of micro vessels contributed to function -al recovery in experimental CSM, which may be associated with NVU remodeling.

9.
Front Pharmacol ; 15: 1335374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510653

RESUMO

Background: Previous studies have documented important roles for microRNA-147 (miR-147) in inflammation, radiation-induced injury, cancer, and a range of other diseases. Murine lungs exhibit high levels of miRNA, mRNA, and lncRNA expression. However, very little research to date has focused on the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks associated with miR-147, and the regulation of lncRNAs and miRNAs in this setting remains poorly understood. Methods: After establishing a miR-147-/- model mouse, samples of lung tissue were harvested for RNA-sequencing, and differentially expressed lncRNAs, miRNAs, and mRNAs were identified. The miRNA targets of these lncRNAs and the identified miRNAs were first overlapped to facilitate the prediction of target mRNAs, with analyses then examining the overlap between these targets and mRNAs that were differentially expressed. Then, these target mRNAs were subjected to pathway enrichment analyses. These results were ultimately used to establish a miR-147-related ceRNA network. Results: Relative to wild-type mice, the lungs of miR-147-/- mice exhibited 91, 43, and 71 significantly upregulated lncRNAs, miRNAs, and mRNAs, respectively, together with 114, 31, and 156 that were significantly downregulated. The lncRNA-miRNA-mRNA network established based on these results led to the identification of Kcnh6 as a differentially expressed hub gene candidate and enabled the identification of a range of regulatory relationships. KEGG pathway enrichment showed that the mRNA targets of differentially expressed lncRNAs and miRNAs in the mice were associated with tumor-related signaling, endometrial cancer, bladder cancer, and ErbB signaling. Conclusion: These results suggest that the identified ceRNA network in miR-147-/- mice shapes tumor-associated signaling activity, with miR-147 potentially regulating various lncRNAs and miRNAs through Kcnh6, ultimately influencing tumorigenesis. Future studies of the lncRNA, miRNA, and mRNA regulatory targets shown to be associated with miR-147 in the present study may ultimately lead to the identification of novel clinically relevant targets through which miR-147 shapes the pathogenesis of cancer and other diseases.

10.
Front Surg ; 11: 1278421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486794

RESUMO

Calcium sulfate and calcium sulfate-based biomaterials have been widely used in non-load-bearing bone defects for hundreds of years due to their superior biocompatibility, biodegradability, and non-toxicity. However, lower compressive strength and rapid degradation rate are the main limitations in clinical applications. Excessive absorption causes a sharp increase in sulfate ion and calcium ion concentrations around the bone defect site, resulting in delayed wound healing and hypercalcemia. In addition, the space between calcium sulfate and the host bone, resulting from excessively rapid absorption, has adverse effects on bone healing or fusion techniques. This issue has been recognized and addressed. The lack of sufficient mechanical strength makes it challenging to use calcium sulfate and calcium sulfate-based biomaterials in load-bearing areas. To overcome these defects, the introduction of various inorganic additives, such as calcium carbonate, calcium phosphate, and calcium silicate, into calcium sulfate is an effective measure. Inorganic materials with different physical and chemical properties can greatly improve the properties of calcium sulfate composites. For example, the hydrolysis products of calcium carbonate are alkaline substances that can buffer the acidic environment caused by the degradation of calcium sulfate; calcium phosphate has poor degradation, which can effectively avoid the excessive absorption of calcium sulfate; and calcium silicate can promote the compressive strength and stimulate new bone formation. The purpose of this review is to review the poor properties of calcium sulfate and its complications in clinical application and to explore the effect of various inorganic additives on the physicochemical properties and biological properties of calcium sulfate.

11.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546207

RESUMO

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

12.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Pandemias , Replicação Viral , DNA Helicases/metabolismo , Adenosina Trifosfatases , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , RNA Helicases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
13.
Medicine (Baltimore) ; 103(11): e34646, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489680

RESUMO

The study aimed to determine the optimal entry points and trajectories for posterior subaxial cervical pedicle screw (CPS) fixation. Computed tomography (CT) and Mimics software were used to evaluate the subaxial cervical pedicle in 42 cervical spine CT scans. The width of the cervical pedicle was measured and compared at medial angulations of 30°, 35°, 40°, 45°, 50°, 55°, and 60° relative to the midline sagittal plane. Based on an observational examination of the positions of all cervical 3-dimensional models and screws, the proposed entry point for C3-7 CPS was analyzed. Although the variations in C3-6 pedicle width (PW) among 45°, 50°, and 55° were not statistically significant, they were significantly larger than the differences among 30°, 35°, 40°, and 60° angles (P < .05). The differences in C7 PW between the 30°, 35°, 40°, and 45° angles were not statistically different even though the 30°, 35°, 40°, and 45° angles were significantly bigger. (P < .05). The proposed entry point for C3-7 CPS was below the junction of the lateral and lower borders of the superior articular process joint surface. The entry point for C3-7 levels was below the junction of the lateral and lower borders of the superior articular process joint surface. The optimal medial angulation for the posterior C3-6 CPS was 45°-55° and that for the posterior C7 CPS was 30°-45°. The sagittal angle of the posterior C3-7 CPS was parallel to the corresponding upper endplate.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Tomografia Computadorizada por Raios X/métodos , Pescoço , Fusão Vertebral/métodos
14.
Biosens Bioelectron ; 253: 116162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437748

RESUMO

An electrochemiluminescence (ECL) biosensor with a pair of new ECL emitters and a novel sensing mechanism was designed for the high-sensitivity detection of microRNA-141 (miRNA-141). Sulfur-doped boron nitrogen quantum dots (S-BN QDs) were initially employed to modify the cathode of the bipolar electrode (BPE), while the anode reservoir was [Ir(dfppy)2(bpy)]PF6/TPrA system. The next step involved attaching H1-bound ultra-small WO3-x nanodots (WO3-x NDs) to the S-BN QDs-modified BPE cathode via DNA hybridization. A strong surface plasmon coupling (SPC) effect was observed between S-BN QDs and WO3-x NDs, which allowed for the enhancement of the red and visible ECL emission from S-BN QDs. After target-induced cyclic amplification to produce abundant Zn2+ and Au NPs-DNA3-Au NPs (Au NPs-S3-Au NPs), Zn2+ could cleave DNA at a nucleotide sequence-specific recognition site to release the WO3-x NDs, resulting in the first diminution of cathode ECL signal and the first enhancement of anode ECL signal. Moreover, the ECL signal at cathode decreased for the second time and the emission of [Ir(dfppy)2(bpy)]PF6 was continuously enhanced after the introduction of Au nanoparticles-S3-Au nanoparticles on the cathode surface. Our sensing mode with a dual "on-off" signal conversion strategy shows a good detection capability for miRNAs ranging from 10-17 to 10-10 M, with a limit of detection (LOD) as low as 10-17 M, which has great application potential in biomedical research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Ouro , Boro , Transferência de Energia , Nitrogênio , Enxofre , DNA
15.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474887

RESUMO

With the increasing use of open-source libraries and secondary development, software projects face security vulnerabilities. Existing studies on source code vulnerability detection rely on natural language processing techniques, but they overlook the intricate dependencies in programming languages. To address this, we propose a framework called Context and Multi-Features-based Vulnerability Detection (CMFVD). CMFVD integrates source code graphs and textual sequences, using a novel slicing method called Context Slicing to capture contextual information. The framework combines graph convolutional networks (GCNs) and bidirectional gated recurrent units (BGRUs) with attention mechanisms to extract local semantic and syntactic information. Experimental results on Software Assurance Reference Datasets (SARDs) demonstrate CMFVD's effectiveness, achieving the highest F1-score of 0.986 and outperforming other models. CMFVD offers a promising approach to identifying and rectifying security flaws in large-scale codebases.

16.
Mar Genomics ; 74: 101083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485293

RESUMO

Bacteria of the genus Oceanisphaera in the class Gammaproteobacteria are widely distributed in marine environments. Oceanisphaera sp. IT1-181 was isolated from intertidal sediment in the coastal region of the Chinese Great Wall Station on the Fildes Peninsula, King George Island, Antarctica. Here, we sequenced the complete genome of strain IT1-181, which contained a single chromosome of 3,572,184 bp (G + C content of 49.89 mol%) with five plasmids. A total of 3229 protein-coding genes, 88 tRNA genes, and 25 rRNA genes were obtained. Genome sequence analysis revealed that strain IT1-181 was not only a potentially novel species of the genus Oceanisphaera, but also harbored genes involved in biosynthesizing ectoine as well as poly-ß-hydroxybutyric acid (PHB). In addition, genes of a complete type I-E CRISPR-Cas system were found in the bacterium. The results indicate the potential of strain Oceanisphaera sp. IT1-181 in biotechnology and are helpful for us understanding its ecological roles in the changing Antarctic intertidal zone environment.


Assuntos
Aeromonadaceae , Água do Mar , Água do Mar/microbiologia , Ácidos Graxos/análise , Regiões Antárticas , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S , Técnicas de Tipagem Bacteriana , Plasmídeos/genética , Bactérias/genética , Aeromonadaceae/genética , Análise de Sequência de DNA
17.
iScience ; 27(3): 109292, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439976

RESUMO

Understanding and tuning charge transport in molecular junctions is pivotal for crafting molecular devices with tailored functionalities. Here, we report a novel approach to manipulate the absorption configuration within a 4,4'-bipyridine (4,4'-BPY) molecular junction, utilizing the scanning tunneling microscope break junction technique in a concentration-dependent manner. Single-molecule conductance measurements demonstrate that the molecular junctions exhibit a significant concentration dependence, with a transition from high conductance (HC) to low conductance (LC) states as the concentration decreases. Moreover, we identified an additional conductance state in the molecular junctions besides already known HC and LC states. Flicker noise analysis and theoretical calculations provided valuable insights into the underlying charge transport mechanisms and single-molecule absorption configurations concerning varying concentrations. These findings contribute to a fundamental comprehension of charge transport in concentration-dependent molecular junctions. Furthermore, they offer promising prospects for controlling single-molecule adsorption configurations, thereby paving the way for future molecular devices.

18.
Huan Jing Ke Xue ; 45(2): 898-908, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471928

RESUMO

Magnetic phosphorous biochar (MPBC) was prepared from Camellia oleifera shells using phosphoric acid activation and iron co-deposition. The materials were characterized and analyzed through scanning electron microscopy (SEM), X-ray diffractometry (XRD), specific surface area and pore size analysis (BET), Fourier infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). MPBC had a high surface area (1 139.28 m2·g-1) and abundant surface functional groups, and it could achieve fast solid-liquid separation under the action of an external magnetic field. The adsorption behavior and influencing factors of sulfamethoxazole (SMX) in water were investigated. The adsorbent showed excellent adsorption properties for SMX under acidic and neutral conditions, and alkaline conditions and the presence of CO32- had obvious inhibition on adsorption. The adsorption process conformed to the quasi-second-order kinetics and Langmuir model. The adsorption rate was fast, and the maximum adsorption capacity reached 356.49 mg·g-1. The adsorption process was a spontaneous exothermic reaction, and low temperature was beneficial to the adsorption. The adsorption mechanism was mainly the chemisorption of pyrophosphate surface functional groups (C-O-P bond) between the SMX molecule and MPBC and also included hydrogen bonding, π-π electron donor-acceptor (π-πEDA) interaction, and a pore filling effect. The development of MPBC adsorbent provides an effective way for resource utilization of waste Camellia oleifera shells and treatment of sulfamethoxazole wastewater.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fósforo , Cinética , Fenômenos Magnéticos
20.
Sci Rep ; 14(1): 5867, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467756

RESUMO

To illustrate the surgical technique and explore clinical outcomes of the reconstruction for the malignant and metastatic bone tumour of proximal femur with metallic modular intercalary prosthesis. Sixteen patients who underwent modular intercalary prosthetic reconstruction after tumour resection were included from April 2012 and October 2020. Prosthesis and screws parameters, resected bone length and residual bone length, clinical outcomes and survivorship were analyzed. All patients were followed up for an average of 19 months (range 1-74). In our series, 12 patients died of the progression of the primary disease at the final follow-up. The cumulative survivorship since the treatment of proximal femoral metastasis was 78.6% (11 patients) at 6 months and 38.5% (5 patients) at 1 year. The mean MSTS score was 22.25 ± 4.55 among all patients. There were no cases of loosening or breakage of the prostheses, plates or screws, despite the various measurements of prostheses and residual bones. Modular intercalary prosthetic reconstruction was an effective method for malignant tumour of the proximal femur, including the advantages of providing early pain relief, quickly restoring postoperative function, required a short operation time, and preserving the adjacent joints.


Assuntos
Neoplasias Ósseas , Fêmur , Humanos , Resultado do Tratamento , Fêmur/patologia , Extremidade Inferior , Implantação de Prótese/métodos , Neoplasias Ósseas/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...